Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Science ; 383(6680): eadf2341, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38236959

RESUMO

Liquid biopsies enable early detection and monitoring of diseases such as cancer, but their sensitivity remains limited by the scarcity of analytes such as cell-free DNA (cfDNA) in blood. Improvements to sensitivity have primarily relied on enhancing sequencing technology ex vivo. We sought to transiently augment the level of circulating tumor DNA (ctDNA) in a blood draw by attenuating its clearance in vivo. We report two intravenous priming agents given 1 to 2 hours before a blood draw to recover more ctDNA. Our priming agents consist of nanoparticles that act on the cells responsible for cfDNA clearance and DNA-binding antibodies that protect cfDNA. In tumor-bearing mice, they greatly increase the recovery of ctDNA and improve the sensitivity for detecting small tumors.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Animais , Camundongos , Biomarcadores Tumorais/sangue , Ácidos Nucleicos Livres/sangue , DNA Tumoral Circulante/sangue , Biópsia Líquida , Mutação , Neoplasias/sangue , Neoplasias/diagnóstico , Humanos , Feminino , Camundongos Endogâmicos BALB C , Sensibilidade e Especificidade
2.
Nat Commun ; 14(1): 8340, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097573

RESUMO

Drug nanoaggregates are particles that can deleteriously cause false positive results during drug screening efforts, but alternatively, they may be used to improve pharmacokinetics when developed for drug delivery purposes. The structural features of molecules that drive nanoaggregate formation remain elusive, however, and the prediction of intracellular aggregation and rational design of nanoaggregate-based carriers are still challenging. We investigate nanoaggregate self-assembly mechanisms using small molecule fragments to identify the critical molecular forces that contribute to self-assembly. We find that aromatic groups and hydrogen bond acceptors/donors are essential for nanoaggregate formation, suggesting that both π-π stacking and hydrogen bonding are drivers of nanoaggregation. We apply structure-assembly-relationship analysis to the drug sorafenib and discover that nanoaggregate formation can be predicted entirely using drug fragment substructures. We also find that drug nanoaggregates are stabilized in an amorphous core-shell structure. These findings demonstrate that rational design can address intracellular aggregation and pharmacologic/delivery challenges in conventional and fragment-based drug development processes.


Assuntos
Simulação de Dinâmica Molecular , Preparações Farmacêuticas
3.
bioRxiv ; 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36711455

RESUMO

Blood-based, or "liquid," biopsies enable minimally invasive diagnostics but have limits on sensitivity due to scarce cell-free DNA (cfDNA). Improvements to sensitivity have primarily relied on enhancing sequencing technology ex vivo . Here, we sought to augment the level of circulating tumor DNA (ctDNA) detected in a blood draw by attenuating the clearance of cfDNA in vivo . We report a first-in-class intravenous DNA-binding priming agent given 2 hours prior to a blood draw to recover more cfDNA. The DNA-binding antibody minimizes nuclease digestion and organ uptake of cfDNA, decreasing its clearance at 1 hour by over 150-fold. To improve plasma persistence and limit potential immune interactions, we abrogated its Fc-effector function. We found that it protects GC-rich sequences and DNase-hypersensitive sites, which are ordinarily underrepresented in cfDNA. In tumor-bearing mice, priming improved tumor DNA recovery by 19-fold and sensitivity for detecting cancer from 6% to 84%. These results suggest a novel method to enhance the sensitivity of existing DNA-based cancer testing using blood biopsies.

4.
bioRxiv ; 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36711603

RESUMO

Liquid biopsies are enabling minimally invasive monitoring and molecular profiling of diseases across medicine, but their sensitivity remains limited by the scarcity of cell-free DNA (cfDNA) in blood. Here, we report an intravenous priming agent that is given prior to a blood draw to increase the abundance of cfDNA in circulation. Our priming agent consists of nanoparticles that act on the cells responsible for cfDNA clearance to slow down cfDNA uptake. In tumor-bearing mice, this agent increases the recovery of circulating tumor DNA (ctDNA) by up to 60-fold and improves the sensitivity of a ctDNA diagnostic assay from 0% to 75% at low tumor burden. We envision that this priming approach will significantly improve the performance of liquid biopsies across a wide range of clinical applications in oncology and beyond.

5.
Nano Lett ; 22(11): 4376-4382, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616515

RESUMO

Autoimmune diseases and in particular type 1 diabetes rely heavily on treatments that target the symptoms rather than prevent the underlying disease. One of the barriers to better therapeutic strategies is the inability to detect and efficiently target rare autoreactive T-cell populations that are major drivers of these conditions. Here, we develop a unique artificial antigen-presenting cell (aAPC) system from biocompatible polymer particles that allows specific encapsulation of bioactive ingredients. Using our aAPC, we demonstrate that we are able to detect rare autoreactive CD4 populations in human patients, and using mouse models, we demonstrate that our particles are able to induce desensitization in the autoreactive population. This system provides a promising tool that can be used in the prevention of autoimmunity before disease onset.


Assuntos
Diabetes Mellitus Tipo 1 , Linfócitos T , Animais , Células Apresentadoras de Antígenos , Autoimunidade , Linfócitos T CD4-Positivos , Diabetes Mellitus Tipo 1/terapia , Humanos , Camundongos
6.
Front Physiol ; 13: 850707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634138

RESUMO

Background: A force plate is used to determine the ability to balance ability. However, only some medical centers or laboratories are equipped with force plates because they are costly so a low-cost force plate is required for home care or health care institutes. Few studies compare the reliability of postural sway measurements in terms of age. This study proposes a low-cost force plate to select reliable parameters to evaluate postural sway. Objectives: To determine the intra-rater reliability of a novel force plate and the effect of age difference on the intra-rater test-retest reliability for the center of pressure (COP). Methods: Forty participants were enrolled for this study: 20 youths and 20 older adults. Participants stood on a custom-made and low-cost force plate with eyes opened and eyes closed to measure COP-related parameters. The within-day test-retest reliability was measured at two sessions on the same day and the between-days reliability was measured on two different days. The COP-related parameters include the average velocity of COP, the average velocity in the antero-posterior and medio-lateral directions, the mean distance of COP and the mean distance in the antero-posterior and medio-lateral directions. An intra-class correlation coefficient test with one-way random model was performed to determine the reliability of different variables within-days and between-days. The results were presented in single measurement of intraclass correlation coefficient (ICC), the standard error of measurements, and the minimal detectable changes of each COP-related parameters. Results: The novel low-cost force plate demonstrates excellent reliability in terms of the COP velocity related parameters for within- and between-day measurements. The ICC of COP distance related parameters were good to excellent reliability for between-day measurements (range: 0.43-0.84). Older adults demonstrated excellent reliability in terms of the mean distance for antero-posterior and the results were better than those for younger participants for the eyes-opened and eyes-closed conditions. The reliability in terms of the mean distance for medio-lateral was poor to good for older adults (range: 0.38-0.55), and excellent for younger participants. Conclusion: The novel and low-cost force plate reliably measured balance and age affects the reliability of different COP variables, so the results of this study were pertinent to the selection of COP measures.

7.
J Am Chem Soc ; 144(18): 8138-8152, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35452210

RESUMO

Controlling the interfaces and interactions of colloidal nanoparticles (NPs) via tethered molecular moieties is crucial for NP applications in engineered nanomaterials, optics, catalysis, and nanomedicine. Despite a broad range of molecular types explored, there is a need for a flexible approach to rationally vary the chemistry and structure of these interfacial molecules for controlling NP stability in diverse environments, while maintaining a small size of the NP molecular shell. Here, we demonstrate that low-molecular-weight, bifunctional comb-shaped, and sequence-defined peptoids can effectively stabilize gold NPs (AuNPs). The generality of this robust functionalization strategy was also demonstrated by coating of silver, platinum, and iron oxide NPs with designed peptoids. Each peptoid (PE) is designed with varied arrangements of a multivalent AuNP-binding domain and a solvation domain consisting of oligo-ethylene glycol (EG) branches. Among designs, a peptoid (PE5) with a diblock structure is demonstrated to provide a superior nanocolloidal stability in diverse aqueous solutions while forming a compact shell (∼1.5 nm) on the AuNP surface. We demonstrate by experiments and molecular dynamics simulations that PE5-coated AuNPs (PE5/AuNPs) are stable in select organic solvents owing to the strong PE5 (amine)-Au binding and solubility of the oligo-EG motifs. At the vapor-aqueous interface, we show that PE5/AuNPs remain stable and can self-assemble into ordered 2D lattices. The NP films exhibit strong near-field plasmonic coupling when transferred to solid substrates.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Peptoides , Ouro/química , Nanopartículas Metálicas/química , Simulação de Dinâmica Molecular , Nanoestruturas/química , Peptoides/química
8.
Nat Commun ; 12(1): 3702, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140491

RESUMO

Versatile methods to organize proteins in space are required to enable complex biomaterials, engineered biomolecular scaffolds, cell-free biology, and hybrid nanoscale systems. Here, we demonstrate how the tailored encapsulation of proteins in DNA-based voxels can be combined with programmable assembly that directs these voxels into biologically functional protein arrays with prescribed and ordered two-dimensional (2D) and three-dimensional (3D) organizations. We apply the presented concept to ferritin, an iron storage protein, and its iron-free analog, apoferritin, in order to form single-layers, double-layers, as well as several types of 3D protein lattices. Our study demonstrates that internal voxel design and inter-voxel encoding can be effectively employed to create protein lattices with designed organization, as confirmed by in situ X-ray scattering and cryo-electron microscopy 3D imaging. The assembled protein arrays maintain structural stability and biological activity in environments relevant for protein functionality. The framework design of the arrays then allows small molecules to access the ferritins and their iron cores and convert them into apoferritin arrays through the release of iron ions. The presented study introduces a platform approach for creating bio-active protein-containing ordered nanomaterials with desired 2D and 3D organizations.


Assuntos
Apoferritinas/química , Bioengenharia/métodos , Citoesqueleto/química , DNA/química , Ferritinas/química , Nanoestruturas/química , Apoferritinas/ultraestrutura , Microscopia Crioeletrônica , Citoesqueleto/ultraestrutura , Ferritinas/ultraestrutura , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Conformação Molecular
9.
ACS Nano ; 15(3): 4034-4044, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33587607

RESUMO

The evolution of life on earth eventually leads to the emergence of species with increased complexity and diversity. Similarly, evolutionary chemical space exploration in the laboratory is a key step to pursue the structural and functional diversity of supramolecular systems. Here, we present a powerful tool that enables rapid peptide diversification and employ it to expand the chemical space for supramolecular functions. Central to this strategy is the exploitation of palladium-catalyzed Suzuki-Miyaura cross-coupling reactions to direct combinatorial synthesis of peptide arrays in microtiter plates under an open atmosphere. Taking advantage of this in situ library design, our results unambiguously deliver a fertile platform for creating a set of intriguing peptide functions including green fluorescent protein-like peptide emitters with chemically encoded emission colors, hierarchical self-assembly into nano-objects, and macroscopic hydrogels. This work also offers opportunities for quickly surveying the diversified peptide arrays and thereby identifying the structural factors that modulate peptide properties.


Assuntos
Paládio , Peptídeos , Hidrogéis
10.
ACS Nano ; 14(11): 14646-14654, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32880434

RESUMO

The ability to coordinate and confine enzymes presents an opportunity to affect their performance and to create chemically active materials. Recent studies show that polymers and biopolymers can be used to scaffold enzymes, and that can lead to the modulated biocatalytic efficiency. Here, we investigated the role of microenvironments on enzyme activity using a well-defined molecular scaffold. An enzyme, glucose oxidase (GOx), was positioned at different locations of a three-dimensional (3D) octahedral DNA scaffold (OS), allowing the enzyme's polyanionic environments to be altered. Using electrical sensing, based on a bipolar junction transistor, we measured directly and in real-time the enzyme's proton generation at these different microenvironments. We found a 200% enhancement of immobilized enzyme over free GOx and about a 30% increase in catalytic rates when the enzyme was moved on the same molecular scaffold to a microenvironment with a higher local concentration of polyanions, which suggests a role of local pH on the enzymatic activity.


Assuntos
Enzimas Imobilizadas , Glucose Oxidase , Biocatálise , DNA , Enzimas Imobilizadas/metabolismo , Glucose Oxidase/metabolismo
11.
Sensors (Basel) ; 20(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486417

RESUMO

Due to the central role of DNA, its interactions with inorganic salts and small organic molecules are important. For example, such interactions play important roles in various fundamental cellular processes in living systems and are involved in many DNA-damage related diseases. Strategies to improve the sensitivity of existing techniques for studying DNA interactions with other molecules would be appreciated in situations where the interactions are too weak. Here we report our development and demonstration of bent DNA bows for amplifying, sensing, and detecting the interactions of 14 inorganic salts and small organic molecules with DNA. With the bent DNA bows, these interactions were easily visualized and quantified in gel electrophoresis, which were difficult to measure without bending. In addition, the strength of the interactions of DNA with the various salts/molecules were quantified using the modified Hill equation. This work highlights the amplification effects of the bending elastic energy stored in the DNA bows and the potential use of the DNA bows for quantitatively measuring DNA interactions with small molecules as simple economic methods; it may also pave the way for exploiting the bent DNA bows for other applications such as screening DNA-interacting molecules and drugs.


Assuntos
DNA/química , Sais/análise , Conformação de Ácido Nucleico
12.
Proc Natl Acad Sci U S A ; 117(12): 6339-6348, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32165539

RESUMO

DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson-Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1-9) with two types of architectures, termed as "brush" and "block," were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications.


Assuntos
DNA/química , Nanoestruturas/química , Peptoides/química , Sistemas de Liberação de Medicamentos , Simulação de Dinâmica Molecular , Estrutura Molecular , Nanoestruturas/administração & dosagem , Nanotecnologia , Peptoides/síntese química , Eletricidade Estática
13.
Nanoscale ; 11(36): 16801-16809, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31469380

RESUMO

Understanding the mechanisms behind crystal nucleation and growth is a fundamental requirement for the design and production of bespoke nanomaterials with controlled sizes and morphologies. Herein, we select gold (Au) nanoparticles as the model system for our study due to their representative applications in biology, electronics and optoelectronics. We investigate the radiation-induced in situ growth of gold (Au) particles using liquid cell transmission electron microscopy (LCTEM) and study the growth kinetics of non-spherical Au structures. Under controlled electron fluence, liquid flow rate and Au3+ ion supply, we show the favoured diffusion-limited growth of multi-twinned nascent Au seed particles into branched structures when using thin liquid cells (100 nm and 250 nm) in LCTEM, whereas faceted structures (e.g., spheres, rods, and prisms) formed when using a 1 µm thick liquid cell. In addition, we observed that anisotropic Au growth could be modulated by Au-binding amyloid fibrils, which we ascribe to their capability to regulate Au3+ ion diffusion and mass transfer in solution. We anticipate that this study will provide new perspectives on the shape-controlled synthesis of anisotropic metallic nanomaterials using LCTEM.

14.
ACS Omega ; 4(7): 12018-12027, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460314

RESUMO

The adsorption ability of porous carbons toward contaminants is closely related to the porous structures and the working functional groups. In this aspect, two porous carbons, with the potential use as adsorbents for CO2 and iodine, were prepared from polycyclotrimerizations (PCTs) of flexible bisphenyl A dicyanate (BPAC) and rigid binaphthalenyl dicyanate (BNC) cyanate ester monomers. Primarily, PCT reactions of BPAC and BNC generated the respective nonporous c-BPAC and c-BNC precursors, which contain high amounts of nitrogen and oxygen heteroatoms. Further KOH activations of c-BPAC and c-BNC produced the respective porous a-BPAC and a-BNC carbons, which mainly contain oxygen heteroatoms. The a-BNC derived from rigid BNC contains both micro- and mesopores and is high in adsorbing both CO2 (6.3 mmol/g) and iodine; in contrast, the microporous a-BPAC is lower in adsorbing CO2 (3.9 mmol/g) and iodine. The effects of molecular flexibility of the starting cyanate ester on the micro- and mesopore distribution as well as the CO2 and iodine adsorption behaviors of the porous carbons are therefore probed in this study.

15.
ACS Nano ; 11(9): 8579-8589, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28771324

RESUMO

Determining the structural origins of amyloid fibrillation is essential for understanding both the pathology of amyloidosis and the rational design of inhibitors to prevent or reverse amyloid formation. In this work, the decisive roles of peptide structures on amyloid self-assembly and morphological diversity were investigated by the design of eight amyloidogenic peptides derived from islet amyloid polypeptide. Among the segments, two distinct morphologies were highlighted in the form of twisted and planar (untwisted) ribbons with varied diameters, thicknesses, and lengths. In particular, transformation of amyloid fibrils from twisted ribbons into untwisted structures was triggered by substitution of the C-terminal serine with threonine, where the side chain methyl group was responsible for the distinct morphological change. This effect was confirmed following serine substitution with alanine and valine and was ascribed to the restriction of intersheet torsional strain through the increased hydrophobic interactions and hydrogen bonding. We also studied the variation of fibril morphology (i.e., association and helicity) and peptide aggregation propensity by increasing the hydrophobicity of the peptide side group, capping the N-terminus, and extending sequence length. We anticipate that our insights into sequence-dependent fibrillation and morphological diversity will shed light on the structural interpretation of amyloidogenesis and development of structure-specific imaging agents and aggregation inhibitors.


Assuntos
Amiloide/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Sequência de Aminoácidos , Amiloide/ultraestrutura , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/ultraestrutura , Microscopia de Força Atômica , Conformação Proteica em Folha beta , Difração de Raios X
16.
Talanta ; 173: 44-50, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28602190

RESUMO

Amyloid fibrillation is a nucleation-dependent process known be involved in the development of more than 20 progressive and chronic diseases. The detection of amyloid formation at the nucleation stage can greatly advance early diagnoses and treatment of diseases. In this work, we developed a new assay for the early detection of amylin fibrillation using the biarsenical dye 4,5-bis(1,3,2-dithiarsolan-2-yl)fluorescein (FlAsH), which could recognise tetracysteine motifs and transform from non-fluorescent form into strongly fluorescent complexes. Due to the close proximity of two cysteine residues within the hydrophilic domain of amylin, a non-contiguous tetracysteine motif can form upon amylin dimerisation or oligomerisation, which can be recognised by FlAsH and emit strong fluorescence. This enables us to report the nucleation-growth process of amylin without modification of the protein sequence. We showed that the use of this assay not only allowed the tracking of initial nucleation events, but also enabled imaging of amyloid fibrils and investigation of the effects of amyloid inhibitor/modulator toward amylin fibrillation.


Assuntos
Corantes Fluorescentes/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Agregados Proteicos , Multimerização Proteica , Tetraciclina/química , Humanos , Estrutura Secundária de Proteína
17.
Chem Mater ; 29(4): 1550-1560, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28260837

RESUMO

A comprehensive understanding of the mechanisms of interaction between proteins or peptides and nanomaterials is crucial for the development of nanomaterial-based diagnostics and therapeutics. In this work, we systematically explored the interactions between citrate-capped gold nanoparticles (AuNPs) and islet amyloid polypeptide (IAPP), a 37-amino acid peptide hormone co-secreted with insulin from the pancreatic islet. We utilized diffusion-ordered spectroscopy, isothermal titration calorimetry, localized surface plasmon resonance spectroscopy, gel electrophoresis, atomic force microscopy, transmission electron microscopy (TEM), and molecular dynamics (MD) simulations to systematically elucidate the underlying mechanism of the IAPP-AuNP interactions. Because of the presence of a metal-binding sequence motif in the hydrophilic peptide domain, IAPP strongly interacts with the Au surface in both the monomeric and fibrillar states. Circular dichroism showed that AuNPs triggered the IAPP conformational transition from random coil to ordered structures (α-helix and ß-sheet), and TEM imaging suggested the acceleration of IAPP fibrillation in the presence of AuNPs. MD simulations revealed that the IAPP-AuNP interactions were initiated by the N-terminal domain (IAPP residues 1-19), which subsequently induced a facet-dependent conformational change in IAPP. On a Au(111) surface, IAPP was unfolded and adsorbed directly onto the Au surface, while for the Au(100) surface, it interacted predominantly with the citrate adlayer and retained some helical conformation. The observed affinity of AuNPs for IAPP was further applied to reduce the level of peptide-induced lipid membrane disruption.

18.
Angew Chem Int Ed Engl ; 56(9): 2361-2365, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28102964

RESUMO

Supramolecular self-assembly is an important process that enables the conception of complex structures mimicking biological motifs. Herein, we constructed helical fibrils through chiral self-assembly of nucleobase-peptide conjugates (NPCs), where achiral nucleobases are helically displayed on the surface of fibrils, comparable to polymerized nucleic acids. Selective binding between DNA and the NPC fibrils was observed with fluorescence polarization. Taking advantage of metal-nucleobase recognition, we highlight the possibility of deposition/assembly of plasmonic nanoparticles onto the fibrillar constructs. In this approach, the supramolecular chirality of NPCs can be adaptively imparted to metallic nanoparticles, covering them to generate structures with plasmonic chirality that exhibit significantly improved colloidal stability. The self-assembly of rationally designed NPCs into nanohelices is a promising way to engineer complex, optically diverse nucleobase-derived nanomaterials.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Ácidos Nucleicos/química , Peptídeos/química , Sítios de Ligação , Coloides/química , DNA/química , Modelos Moleculares , Nanoestruturas/ultraestrutura , Polimerização
19.
Health Policy ; 120(6): 674-81, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27131976

RESUMO

OBJECTIVES: The evidence of improved survival in patients of colorectal cancer (CRC) receiving multidisciplinary team (MDT) care remains inconclusive. METHODS: All patients with incident CRC but no prior cancer history in 2005-2008 were included and followed till 2010. A logistic regression model was used to predict the associated factors to participate in the MDT care model. The propensity score method was included under Cox proportional hazards model to reduce potential bias and to conduct survival analyses. RESULTS: In total, 25,766 patients were included; the mean follow-up period was 35.1 months. The factors associated with participating in MDT included receiving treatments at regional hospitals, at private hospitals, and stage III cancer (all p values <0.001). The favorable survival factors included participating in MDT (HR=0.91, p=0.001), age of 45-75, top-ranked income group, receiving treatments at district hospitals, or at hospitals or with doctors that had higher service volumes (all p values <0.05). Regarding individual stages, the risk of mortality was significantly lower at stage IV (HR=0.88, p=0.002). CONCLUSION: Colorectal cancer patients with participation in MDT have a lower mortality risk; the improvements of survival exist in all colorectal cancer patients, especially in those with stage IV disease.


Assuntos
Neoplasias Colorretais/terapia , Equipe de Assistência ao Paciente/estatística & dados numéricos , Sobrevida , Idoso , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pontuação de Propensão , Qualidade da Assistência à Saúde , Estudos Retrospectivos , Taiwan/epidemiologia
20.
J Am Chem Soc ; 138(11): 3856-62, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26928525

RESUMO

In viral proteins, labile Zn-sites, where Zn(2+) is crucial for maintaining the native protein structure but the Zn-bound cysteines are reactive, are promising drug targets. Here, we aim to (i) identify labile Zn-sites in viral proteins using guidelines established from our previous work and (ii) assess if clinically safe Zn-ejecting agents could eject Zn(2+) from the predicted target site and thus inhibit viral replication. As proof-of-concept, we identified a labile Zn-site in the hepatitis C virus (HCV) NS5A protein and showed that the antialcoholism drug, disulfiram, could inhibit HCV replication to a similar extent as the clinically used antiviral agent, ribavirin. The discovery of a novel viral target and a new role for disulfiram in inhibiting HCV replication will enhance the therapeutic armamentarium against HCV. The strategy presented can also be applied to identify labile sites in other bacterial or viral proteins that can be targeted by disulfiram or other clinically safe Zn-ejectors.


Assuntos
Antivirais/farmacologia , Dissulfiram/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Dissuasores de Álcool/farmacologia , Linhagem Celular , Humanos , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Compostos de Zinco/antagonistas & inibidores , Compostos de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA